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We present virial coefficients of up to fifth order computed by Mayer-sampling Monte Carlo
for several truncated-and-shifted Lennard–Jones potentials. We employ these coefficients
within the virial equation of state to compute vapor-branch spinodals and critical points for
each potential considered. We find that truncation distances of 5.0σ and higher yield values
in significantly better agreement with those of the unmodified potential than those result-
ing from the more commonly used truncation distances of 2.5 and 3.0σ. We also employ
these virial coefficients to examine the perturbed virial expansion method of Nezbeda and
Smith for estimating the critical point. We find that the first-order perturbation performs
well in characterizing the effect of potential truncation on the critical point for the trunca-
tion distances considered, with errors in critical temperatures ranging from –3 to +2% and
errors in critical densities about constant at –22%. Addition of higher-order terms to the per-
turbation treatment brings it closer to the behavior given by the virial equation of state,
which at fifth order underestimates the critical temperatures by 2 to 4% and the critical den-
sities by 20 to 30%.
Keywords: Equation of state; Virial coefficients; Truncated-and-shifted Lennard–Jones poten-
tial; Mayer sampling; Monte Carlo method; Molecular modeling; Thermodynamics.

When employed in molecular simulations, the Lennard–Jones (LJ) poten-
tial, uLJ (Eq. (1)), is often truncated to expedite calculations of fluid proper-
ties. The potential is then typically shifted up to avoid a discontinuity at
the truncation distance. Common truncation distances are 2.5 and 3.0σ,
as for these and larger truncation distances the truncated-and-shifted
Lennard–Jones (LJTS) potential, uLJTS (Eq. (2)), appears to be almost identi-
cal to the original.
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It is well known that these apparently minor modifications to the poten-
tial have a significant impact on fluid properties. For example, truncation
at 2.5σ and shift results in a critical temperature about 17.8% lower than
that of the unmodified potential1. This change can be mitigated through
the application of correction terms after the simulation is completed, and
in this manner the net effect of truncation and shift can be made of the
same magnitude as other finite-size effects, as noted by Kolafa and
Nezbeda2.

Our understanding of how these minor modifications to the potential
result in dramatic changes to the fluid properties is incomplete. As can be
inferred from the pressure equation for pairwise additive, spherically sym-
metric potentials (Eq. (3)), truncation of the pair potential eliminates con-
tributions to the pressure from attractive interactions beyond the cutoff,
and it introduces an impulsive contribution at the cutoff, where the poten-
tial steps to zero3. The impulsive contribution would offset in part the re-
pulsive effect of truncation on the pressure, but it is eliminated by the shift.
The shift further affects the pressure by altering the radial distribution func-
tion, g(r), within the truncation radius – thereby changing the number of
interactions that contribute to the pressure.
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To examine more closely how changes in the description of the interac-
tions alter the pressure, we consider the virial equation of state (Eq. (4)). As
cluster integrals over configuration space, the virial coefficients, Bn, provide
a cumulative measure of how truncation and shift affect molecular interac-
tions within groups of n molecules at different temperatures.
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The second virial coefficient, B2 (Eq. (5)), is the simplest coefficient to cal-
culate and to interpret with regard to truncation and shift. We observe that
the change in the Lennard–Jones B2 after truncation (B2

LJT – B2
LJ) and the

change after shift (B2
LJTS – B2

LJT) are roughly equal (within 25% at kT/ε = 0.7
for truncation at 2.5σ) and both decrease and become more similar with in-
creasing temperature and truncation distance. Higher-order Bn are generally
much more sensitive to shift than truncation, as the high connectivity of
the diagrams makes configurations with long separation distances between
pairs relatively unimportant.

B r ru kT
2

2

0

2 1= − −−
∞

∫π ( )/e d (5)

Schultz and Kofke4 have computed Lennard–Jones virial coefficients up
to B8. The Lennard–Jones seventh-order virial equation of state (LJ-VEOS7)
yields a critical temperature in perfect agreement with the currently accepted
value, 1.313(1) 5, and LJ-VEOS5 yields a critical temperature of 1.291, differ-
ing by only 1.7% from the currently accepted value. Thus, we expect that
VEOS5 for an LJTS model would yield a reasonable estimate of the critical
temperature and afford a means to examine the known effects of uncom-
pensated truncation and shift upon it.

Here, we present virial coefficients of up to fifth order for several LJTS po-
tentials. We employ these newly computed coefficients to estimate the crit-
ical temperature through the virial equation of state and the perturbed
virial expansion (pVE) proposed by Nezbeda and Smith6. As seen in Eq. (6),
the perturbations take the form of n-th order virial contributions, such that
pVE1 considers the difference of reference and target second virial coeffi-
cients, pVE2 the difference of the second and third virial coefficients, etc.
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We employ the hard-sphere equation of state of Boublik and Nezbeda7 as
the reference with a hard-sphere diameter equal to the Lennard–Jones σ.
Using a temperature-dependent hard-sphere diameter, Nezbeda and Smith6

found LJ-pVE1 and LJ-pVE2 to yield good estimates of the critical tempera-
ture, kTc/ε, of 1.27 and 1.28, respectively.
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EXPERIMENTAL

In this work, we consider LJTS models with truncation distances of 2.5, 3.0, 4.0, 5.0, 6.0,
8.0, and 10.0σ. We compute B2 to B5 for each at reduced temperatures, kT/ε, spanning 0.7 to
2.0. For spherically symmetric potentials, B2 and B3 are trivial computations. Here, we have
computed B2 values using simple quadrature and B3 values with fast Fourier transforms. As
higher-order Bn are less amenable to quadrature (the number of integration variables in-
creases by three with each increase in order), we compute B4 and B5 using Mayer-sampling
Monte Carlo (MSMC).

We review the MSMC method only briefly, as a detailed description can be found else-
where8. MSMC uses the same basic concept as free-energy perturbation methods: configura-
tion integrals (e.g., virial coefficients) can be formulated as ratios of ensemble averages by
introducing sampling weights. The sampling weight is selected to be the absolute value of
the integrand because configurations having a larger integrand are more important to the
calculation. The method was named Mayer sampling because, for pairwise additive poten-
tials, the integrands of the virial coefficients are composed of pair Mayer functions, f =
e–u/kT – 1.

The original formulation of MSMC9 employed direct sampling with a reference system of
hard spheres. Hard-sphere virial coefficients can be determined readily by other methods,
such as Ree–Hoover Monte Carlo sampling10. However, the Mayer functions of hard spheres
and most soft potentials at low temperatures are quite different. As the Mayer function of
Lennard–Jones is sharply peaked about the equilibrium separation distance at low tempera-
tures, highly-overlapped configurations important to hard spheres are typically not sampled
sufficiently. Overlap sampling avoids this difficulty8 and has been used in subsequent works
where hard spheres are employed as the reference system11.

The important regions of configuration space for Lennard–Jones and truncated-and-
shifted Lennard–Jones are similar even at low temperatures, making direct sampling feasible.
In this case, the LJ coefficient is used as the reference quantity and the absolute value of its
integrand as the sampling weight. The MSMC method is conducted in an infinite volume
having no boundary, so sampling based on an untruncated potential introduces no compli-
cation. Moreover, it permits consideration of multiple LJTS potentials during a simulation:
at each accepted configuration, the potential can be perturbed to as many LJTS potentials as
desired. This constitutes a significant advantage over overlap sampling, in which a separate
calculation is required for each truncation distance.

We have found that there is little difference in cpu time per step in calculations employ-
ing overlap sampling and direct sampling. Direct sampling within this context also provides
the benefit of significantly lower standard errors when covariance is considered as the LJ
and LJTS potentials yield highly correlated values at each configuration. This benefit in-
creases with the truncation distance, as the LJ and LJTS potentials become more similar.

We have applied this direct-sampling approach to compute the B4 and B5 values pre-
sented in this work. The Bn

LJ values used as reference quantities were computed5 by the
overlap-sampling formulation of MSMC, referencing hard spheres. We have also applied the
direct-sampling method to B2 and B3 to examine sampling efficiency relative to B4 and B5.
We employed one hundred runs of 108 Monte Carlo steps for B2 and B3, and one hundred
runs of 109 Monte Carlo steps for B4 and B5. At temperatures between 1.0 and 1.4, an addi-
tional four hundred runs were used for B5 calculations.
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RESULTS AND DISCUSSION

Virial Coefficients

In Tables I–IV, we present values of second, third, fourth, and fifth virial co-
efficients, respectively, and in Fig. 1, we plot the results. The lines are val-
ues interpolated using the method of Schultz and Kofke12.

Across the temperature range and orders considered, there are significant
differences between the LJ values and those of LJTS2.5 and LJTS3.0. The be-
havior of B5 for these shorter truncation distances is particularly extreme.
As the truncation distance increases, the LJTS values converge to those of
LJ, but the rate of convergence is slower for the higher-order coefficients.
This is understandable, in that the larger the number of molecules (the
more pairs there are), the more the differences in the description of the pair
interaction should manifest themselves. In Fig. 1, one can see that in in-
creasing the order from third to fourth to fifth, the differences between
LJTS4.0, LJTS5.0, LJTS6.0, and LJ become more noticeable, especially at
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FIG. 1
LJTS virial coefficients of different truncation, plotted versus reduced temperature on an in-
verse hyperbolic-sine scale. Error bars are shown only if larger than the markers. The lines
are values interpolated using the method of Schultz and Kofke12
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TABLE II
Third virial coefficients for LJ and LJTS potentials computed by fast Fourier transforms and
quadrature and rounded to the fifth decimal place

kT/ε

B3σ–6

LJTS2.5 LJTS3.0 LJTS4.0 LJTS5.0 LJTS6.0 LJTS8.0 LJTS10.0 LJ

0.7 –7.71683 –11.94502 –14.24138 –14.65765 –14.75967 –14.80260 –14.80952 –14.81199

0.8 –0.27026 –2.28641 –3.43291 –3.64517 –3.69752 –3.71961 –3.72318 –3.72446

0.9 2.15968 1.12139 0.49862 0.38069 0.35142 0.33903 0.33702 0.33631

1.0 2.89700 2.33835 1.98062 1.91115 1.89378 1.88641 1.88522 1.88479

1.1 3.02347 2.71809 2.50508 2.46248 2.45174 2.44717 2.44643 2.44616

1.2 2.92963 2.76527 2.63589 2.60906 2.60223 2.59932 2.59884 2.59867

1.3 2.76557 2.68275 2.60380 2.58664 2.58223 2.58034 2.58003 2.57992

1.4 2.59029 2.55580 2.50828 2.49727 2.49440 2.49316 2.49295 2.49288

1.6 2.28075 2.29281 2.27840 2.27406 2.27287 2.27235 2.27226 2.27223

1.8 2.04744 2.07579 2.07560 2.07429 2.07388 2.07369 2.07366 2.07365

2.0 1.87846 1.91120 1.91715 1.91727 1.91724 1.91721 1.91720 1.91720

TABLE I
Second virial coefficients for LJ and LJTS potentials computed by quadrature and rounded to
the fifth decimal place

kT/ε

B2σ–3

LJTS2.5 LJTS3.0 LJTS4.0 LJTS5.0 LJTS6.0 LJTS8.0 LJTS10.0 LJ

0.7 –8.13320 –8.90666 –9.47734 –9.66964 –9.75267 –9.81772 –9.84069 –9.86468

0.8 –6.34432 –6.99610 –7.48447 –7.65093 –7.72315 –7.77989 –7.79996 –7.82094

0.9 –5.09324 –5.65703 –6.08431 –6.23115 –6.29507 –6.34539 –6.36322 –6.38186

1.0 –4.17187 –4.66896 –5.04897 –5.18037 –5.23772 –5.28294 –5.29897 –5.31575

1.1 –3.46654 –3.91126 –4.25355 –4.37248 –4.42449 –4.46554 –4.48011 –4.49536

1.2 –2.91014 –3.31259 –3.62406 –3.73270 –3.78029 –3.81788 –3.83123 –3.84520

1.3 –2.46059 –2.82821 –3.11400 –3.21400 –3.25786 –3.29253 –3.30484 –3.31774

1.4 –2.09023 –2.42861 –2.69268 –2.78531 –2.82599 –2.85816 –2.86959 –2.88157

1.6 –1.51692 –1.80897 –2.03824 –2.11900 –2.15452 –2.18264 –2.19264 –2.20312

1.8 –1.09484 –1.35181 –1.55443 –1.62602 –1.65754 –1.68252 –1.69141 –1.70072

2.0 –0.77201 –1.00147 –1.18302 –1.24732 –1.27566 –1.29812 –1.30612 –1.31450



Collect. Czech. Chem. Commun. 2010, Vol. 75, No. 4, pp. 447–462

Effect of Truncation and Shift on Virial Coefficients 453
T

A
B

LE
II

I
Fo

u
rt

h
vi

ri
al

co
ef

fi
ci

en
ts

fo
r

LJ
T

S
p

o
te

n
ti

al
s

co
m

p
u

te
d

b
y

d
ir

ec
t

sa
m

p
li

n
g

an
d

th
e

LJ
va

lu
es

co
m

p
u

te
d

b
y

o
ve

rl
ap

sa
m

p
li

n
g4

an
d

em
p

lo
ye

d
as

th
e

re
fe

re
n

ce
q

u
an

ti
ti

es
.

N
u

m
b

er
s

in
p

ar
en

th
es

es
ar

e
th

e
67

%
co

n
fi

d
en

ce
li

m
it

s
in

th
e

ri
gh

tm
o

st
d

ig
it

s
o

f
th

e
va

lu
e

kT
/ε

B
4σ

–9

LJ
T

S2
.5

LJ
T

S3
.0

LJ
T

S4
.0

LJ
T

S5
.0

LJ
T

S6
.0

LJ
T

S8
.0

LJ
T

S1
0.

0
LJ

0.
7

–1
56

.9
8(

3)
–2

60
.8

5(
2)

–3
31

.3
80

(1
9)

–3
46

.1
60

(1
9)

–3
49

.9
10

(1
9)

–3
51

.5
00

(1
9)

–3
51

.7
60

(1
9)

–3
51

.8
54

(1
9)

0.
8

–2
5.

28
4(

13
)

–5
5.

49
7(

9)
–7

8.
52

8(
7)

–8
3.

72
3(

7)
–8

5.
07

0(
7)

–8
5.

64
8(

7)
–8

5.
74

2(
7)

–8
5.

77
6(

7)

0.
9

0.
74

9(
10

)
–8

.7
82

(6
)

–1
7.

27
4(

3)
–1

9.
36

9(
3)

–1
9.

92
6(

3)
–2

0.
16

7(
3)

–2
0.

20
6(

3)
–2

0.
22

1(
3)

1.
0

5.
01

8(
19

)
2.

14
1(

12
)

–1
.1

61
(4

)
–2

.0
77

6(
16

)
–2

.3
28

1(
15

)
–2

.4
37

8(
15

)
–2

.4
55

8(
15

)
–2

.4
62

3(
15

)

1.
1

4.
69

1(
6)

4.
10

0(
5)

2.
83

06
(1

6)
2.

40
94

(8
)

2.
28

99
(7

)
2.

23
69

(7
)

2.
22

81
(7

)
2.

22
50

(7
)

1.
2

3.
62

82
(1

6)
3.

81
89

(1
4)

3.
39

33
(8

)
3.

19
73

(7
)

3.
13

87
(6

)
3.

11
22

(6
)

3.
10

78
(6

)
3.

10
62

(6
)

1.
3

2.
68

54
(8

)
3.

10
95

(7
)

3.
04

43
(4

)
2.

95
64

(3
)

2.
92

78
(3

)
2.

91
45

(3
)

2.
91

23
(3

)
2.

91
15

(3
)

1.
4

2.
00

12
(4

)
2.

45
33

(4
)

2.
53

76
(4

)
2.

50
30

(4
)

2.
48

98
(4

)
2.

48
33

(4
)

2.
48

23
(4

)
2.

48
18

(4
)

1.
6

1.
24

55
(3

)
1.

58
92

(2
)

1.
74

00
(2

)
1.

74
51

(2
)

1.
74

40
(2

)
1.

74
31

(2
)

1.
74

29
(2

)
1.

74
29

(2
)

1.
8

0.
95

86
3(

19
)

1.
18

04
0(

16
)

1.
30

97
0(

5)
1.

32
30

0(
15

)
1.

32
50

0(
15

)
1.

32
57

0(
15

)
1.

32
58

0(
15

)
1.

32
57

8(
15

)

2.
0

0.
88

29
9(

14
)

1.
01

59
0(

12
)

1.
11

20
0(

11
)

1.
12

50
0(

11
)

1.
12

75
0(

11
)

1.
12

84
0(

11
)

1.
12

85
0(

11
)

1.
12

86
0(

11
)



Collect. Czech. Chem. Commun. 2010, Vol. 75, No. 4, pp. 447–462

454 Shaul, Schultz, Kofke:
T

A
B

LE
IV

Fi
ft

h
vi

ri
al

co
ef

fi
ci

en
ts

fo
r

LJ
T

S
p

o
te

n
ti

al
s

co
m

p
u

te
d

b
y

d
ir

ec
t

sa
m

p
li

n
g

an
d

th
e

LJ
va

lu
es

co
m

p
u

te
d

b
y

o
ve

rl
ap

sa
m

p
li

n
g4

an
d

em
-

p
lo

ye
d

as
th

e
re

fe
re

n
ce

q
u

an
ti

ti
es

.
N

u
m

b
er

s
in

p
ar

en
th

es
es

ar
e

th
e

67
%

co
n

fi
d

en
ce

li
m

it
s

in
th

e
ri

gh
tm

o
st

d
ig

it
s

o
f

th
e

va
lu

e;
50

0
ru

n
s

o
f

10
9

st
ep

s
w

er
e

em
p

lo
ye

d
fo

r
kT

/ε
=

1.
0,

1.
1,

1.
2,

1.
3,

an
d

1.
4,

w
h

il
e

10
0

ru
n

s
o

f
10

9
st

ep
s

w
er

e
em

p
lo

ye
d

at
o

th
er

te
m

p
er

a-
tu

re
s

kT
/ε

B
5σ

–1
2

LJ
T

S2
.5

LJ
T

S3
.0

LJ
T

S4
.0

LJ
T

S5
.0

LJ
T

S6
.0

LJ
T

S8
.0

LJ
T

S1
0.

0
LJ

0.
7

–2
99

8(
3)

–5
86

6(
2)

–8
12

9.
3(

1.
8)

–8
65

0.
1(

1.
8)

–8
78

7.
8(

1.
8)

–8
84

7.
4(

1.
8)

–8
85

7.
0(

1.
8)

–8
86

0.
5(

1.
8)

0.
8

–3
43

.4
(8

)
–8

46
.7

(7
)

–1
31

0.
3(

5)
–1

42
9.

6(
5)

–1
46

2.
6(

5)
–1

47
7.

1(
5)

–1
47

9.
5(

5)
–1

48
0.

4(
5)

0.
9

–2
6.

0(
4)

–1
23

.7
(3

)
–2

35
.7

4(
15

)
–2

68
.7

5(
14

)
–2

78
.4

0(
14

)
–2

82
.7

6(
14

)
–2

83
.4

8(
14

)
–2

83
.7

4(
14

)

1.
0

5.
38

(1
0)

–1
0.

70
(9

)
–3

9.
02

(6
)

–4
9.

12
(6

)
–5

2.
31

(6
)

–5
3.

78
(6

)
–5

4.
03

(6
)

–5
4.

12
(6

)

1.
1

2.
86

(7
)

3.
37

(8
)

–2
.8

4(
4)

–5
.9

9(
2)

–7
.1

0(
2)

–7
.6

4(
3)

–7
.7

4(
3)

–7
.7

7(
3)

1.
2

–0
.6

8(
9)

2.
09

(2
0)

1.
79

(1
6)

0.
95

(7
)

0.
58

(4
)

0.
38

4(
19

)
0.

35
0(

17
)

0.
33

8(
16

)

1.
3

–2
.3

0(
9)

0.
02

7(
17

)
1.

03
5(

16
)

0.
90

4(
12

)
0.

78
5(

9)
0.

71
5(

8)
0.

70
2(

8)
0.

69
8(

8)

1.
4

–3
.7

(1
3)

–1
.6

(6
)

–0
.1

2(
3)

0.
02

(2
)

–0
.0

13
(1

2)
–0

.0
42

(6
)

–0
.0

48
(6

)
–0

.0
50

(7
)

1.
6

–1
.9

2(
3)

–1
.5

68
(1

8)
–0

.9
76

(5
)

–0
.8

34
(3

)
–0

.8
12

(3
)

–0
.8

07
(3

)
–0

.8
06

(3
)

–0
.8

06
(3

)

1.
8

–0
.8

58
(6

)
–0

.9
65

(6
)

–0
.7

48
(3

)
–0

.6
59

0(
18

)
–0

.6
39

2(
17

)
–0

.6
32

2(
17

)
–0

.6
31

2(
17

)
–0

.6
31

(1
7)

2.
0

–0
.0

38
(3

)
–0

.2
81

(4
)

–0
.2

54
(2

)
–0

.2
10

3(
13

)
–0

.1
98

5(
11

)
–0

.1
94

0(
11

)
–0

.1
93

3(
11

)
–0

.1
93

1(
11

)



lower temperatures. Convergence to the LJ values with increasing trunca-
tion distance is generally slower for lower temperatures, though this is
harder to deduce from the plots as the scale exaggerates differences close to
zero. As the temperature increases, the short-range repulsive part of the po-
tential becomes more important, diminishing the effect of truncation and
shift on Bn.

Sampling Efficiency

One would expect that the longer the truncation distance is (the more simi-
lar the LJTS and LJ potentials are), the more efficient the direct-sampling
calculation would be. This is what we observe for second through fifth
virial coefficients, as can be seen in Fig. 2. In each subplot, the magnitude
of the contribution to the standard error of a coefficient resulting from the
ratio computed by MSMC is shown, divided by the value of the coefficients;
in these subplots, we neglect the uncertainties in the reference values.
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FIG. 2
Standard errors in the virial coefficients, neglecting any uncertainty in the reference values,
normalized by the magnitude of the virial coefficient. The standard errors for B5 do not in-
clude the additional four hundred runs at reduced temperatures between 1.0 and 1.4



As the truncation distance increases, these contributions to the standard
error drop by orders of magnitude for all but B2. It appears that increasing
the truncation distance from 2.5 to 5.0σ, for example, has a larger impact
on sampling efficiency for B3, B4, and B5 than it does for B2, further demon-
strating that B2 is less sensitive to truncation and shift. For B4 and B5, the
standard errors resulting from the ratio computed by direct sampling drop
well below the standard errors of the reference value: for these coefficients,
the precisions we report in the tables and Fig. 1 are limited by that of the
reference value.

Vapor-Branch Spinodals and Critical Points

We employ the computed virial coefficients within the virial equation of
state and the perturbed virial expansion. The resulting spinodals are deter-
mined by locating zeros of the first derivative of the pressure with respect
to density, and the critical points by locating the density at which the sec-
ond derivative is also zero. In Fig. 3, we have plotted spinodals of LJ-VEOS5
and each LJTS-VEOS5 up to the critical point. Literature values for the criti-
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FIG. 3
VEOS5 vapor-branch spinodals plotted up to the resulting critical point (lines), critical points
of perturbed virial expansions: pVE1 (smallest open symbols) to pVE4 (largest open symbols),
and critical points computed either by Gibbs-ensemble Monte Carlo and scaling arguments
(LJTS2.51, LJTS3.51a, LJ5) or temperature-quench molecular dynamics (LJTS5.013) (solid sym-
bols)



cal points of LJ 5, LJTS2.5 1, LJTS3.5 1a, and LJTS5.0 13 are included on the
plot. In addition, we present critical points estimated using the first-,
second-, third-, and fourth-order perturbed virial expansions. Nezbeda and
Smith6 report critical points for LJ-pVE1 (kTc/ε = 1.27 and ρcσ3 = 0.249) and
LJ-pVE2 (kTc/ε = 1.28 and ρcσ3 = 0.252) that agree well with our values for
LJ-pVE1 (kTc/ε = 1.2704 and ρcσ3 = 0.24848) and LJ-pVE2 (kTc/ε = 1.2817
and ρcσ3 = 0.2511) computed with a constant hard-sphere diameter of σ.

We observe that as the truncation distance decreases, the VEOS5 spinodal
temperatures at a given density decrease, while the spinodal densities at
a given temperature increase. This is in accordance with our expectations
that, for a more repulsive potential, vapor should be metastable or stable
over a wider range of conditions. As observed for the virial coefficients, the
LJTS spinodals converge to that of LJ-VEOS5 as the truncation distance in-
creases. However, apparent convergence to the LJ-VEOS5 spinodal across
the range of conditions is not observed until a truncation distance of about
8.0σ. This is sensible, in that the spinodals reflect not only the temperature
dependence of the virial coefficients but also the density dependence of
each order’s contribution, which is magnified on differentiation. The
higher the density, the more the differences in the virial coefficients at
a particular temperature should manifest themselves.

The spinodal of LJTS5.0-VEOS5 achieves good agreement with that of
LJ-VEOS5 up to about half of the critical density, a region in which the
fourth and fifth virial coefficients are likely unimportant. The VEOS5 criti-
cal temperature of LJTS5.0 differs from that of LJ by an amount almost five
times smaller than the LJTS3.0 result does and more than eight times
smaller than the LJTS2.5 result does, as shown in Table V. We observe the
same for the pVE1 estimates of the critical temperature, shown in Table VI.

To estimate the uncertainty in VEOS5 critical properties resulting from
that in the measured coefficients, we use the following scheme: for each
order of virial coefficient, a Gaussian distribution for the virial coefficient is
created with a standard deviation of the coefficient’s standard error (in the
case of B4 and B5) or its convergence error (in the case of B2 and B3). The
distribution of each coefficient is sampled to generate a possible VEOS5,
and the critical properties of this VEOS5 are computed. Performing the
operation one hundred times for each potential model, we have noted that
there is a bias in the distribution of critical temperatures and densities such
that the average of the distribution is often smaller than the value com-
puted with the average virial coefficients, which we consider to be our best
estimate. This bias becomes worse as the truncation distance decreases. For
that reason, the standard deviations we compute are relative to the best es-
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timate and not the average of the distribution. These standard deviations
are the uncertainties we report in Table V.

We must also consider the uncertainty associated with interpolation
between the temperatures where the coefficients are evaluated. Values for
Bn

LJ have been computed previously at a density of temperatures about five
times that considered here, and the critical property values presented in
Table V are computed from these values. Interpolating between only the
temperatures employed in this work yields critical properties (kTc/ε =
1.2909(3) and ρcσ3 = 0.26120(18)) with sampling-scheme uncertainty esti-
mates that are about the same as the differences from the critical properties
computed with less interpolation. Thus, we conclude that interpolation be-
tween increments of kT/ε = 0.1 is largely sufficient for the unmodified po-
tential. However, the fifth virial coefficient for the LJTS2.5 and LJTS3.0
models varies more widely in between 0.9 and 1.2, such that interpolating
between increments of kT/ε = 0.1 might not be sufficient. Removing half of
the temperatures below kT/ε = 1.6, either odd or even, we observe that a
very conservative estimate of the uncertainty would be as much as an order
of magnitude larger than the uncertainties we report in Table V.
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TABLE V
VEOS5 critical points: temperatures, densities, and their per-cent differences relative to those
of LJ-VEOS5 and, where possible, respective true values for each potential. Numbers in pa-
rentheses indicate the confidence limits of the last digit(s) of the tabulated value

Model

VEOS5
% difference from

LJ-VEOS5 result
% difference from

true value

kTc/ε ρcσ3 kTc/ε ρcσ3 kTc/ε ρcσ3

LJTS2.5 1.038(2) 0.2168(16) –19.58 –3.91a –16.92 –32.51a

LJTS3.0 1.1389(11) 0.2319(8) –11.75 –11.14

LJTS4.0 1.2270(12) 0.2484(9) –4.93 –4.84

LJTS5.0 1.2591(6) 0.2552(4) –2.44 –1.313 –2.21 –20.013

LJTS6.0 1.2738(3) 0.2587(3) –1.30 –0.87

LJTS8.0 1.2840(3) 0.2604(3) –0.51 –0.22

LJTS10.0 1.2875(4) 0.2609(2) –0.24 –0.04

LJ 1.29058(9) 0.26098(7) 0.00 –1.75 0.00 –17.75



Truncation and shift is known to suppress the critical temperature but
not alter the critical density. The fourth columns of Tables V and VI com-
pare the VEOS5 and pVE1 critical temperatures and densities to true values
for the respective potentials available in the literature. Agreement with the
true critical temperatures of LJTS2.5, LJTS5.0, and LJ is within a few percent
for both approximations. Remarkably, the pVE1 estimate of the critical
point of LJTS2.5 is superior to the estimate of VEOS5. The pVE1 values cor-
rectly capture the temperature trend as well as the insensitivity of the criti-
cal density to the truncation distance (although the value of the critical
density is inaccurate). One can show that the critical density of pVE1 is in-
deed independent of truncation radius, and the critical temperature can be
obtained by solving for the temperature at which B2 for the truncated po-
tential equals B2 for the untruncated potential at its critical temperature
(i.e., B2

LJTS(Tc
LJTS) = B2

LJ(Tc
LJ)).

VEOS5 captures the suppression of critical temperature with decreasing
truncation distance, but the predicted critical densities diminish systemati-
cally with the truncation distance and at a rate greater than could be ex-
plained by uncertainties due to standard error in the coefficients or the
interpolation scheme. Moreover, higher-order pVE estimates generally do
not improve upon the accuracy of pVE1: these appear to converge to the
values obtained by VEOSn rather than the true critical points. Addition of
higher terms to the expansion diminishes the significance of the reference
hard-sphere system (as it is systematically removed with each added term),
and makes the perturbation model increasingly like the virial equation it-
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TABLE VI
pVE1 critical points: temperatures, densities, and their percent differences relative to those
of LJ-pVE1 and, where possible, respective true values for each potential

Model

pVE1
% difference from

LJ-pVE1 result
% difference from

true value

kTc/ε ρcσ3 kTc/ε kTc/ε ρcσ3

LJTS2.5 1.1005 0.24848 –13.37 1.951a –22.621a

LJTS3.0 1.1726 0.24848 –7.70

LJTS5.0 1.2494 0.24848 –1.66 –2.0113 –22.1113

LJ 1.2704 0.24848 0 –3.255 –21.625



self. Nevertheless, the reference system can retain its relevance at densities
higher than considered here.

The accuracy of a critical point obtained at a given order by either treat-
ment appears to diminish as the truncation distance decreases. In Fig. 4, we
plot the vapor-branch spinodals of VEOS3, VEOS4, and VEOS5 for LJTS2.5,
LJTS3.0, and LJ as well as the corresponding critical points predicted by the
analogous perturbed virial expansions (pVE2, pVE3, and pVE4, respec-
tively). Increasing the truncation distance from 2.5 to 3.0σ to ∞, the signifi-
cance of the fifth-order VEOS contribution diminishes, as demonstrated by
the respective percent differences in the critical temperature (–6.7, –6.2,
–2.4%) and the critical density (1.8, 1.7, 0.6%). This larger fifth-order con-
tribution for LJTS2.5 and LJTS3.0 is likely the result of their lower spinodal
temperatures, where the virial coefficients are generally larger and more
negative.

Though we do not observe convergence, it is possible that the accuracy of
the critical points to which both treatments converge diminishes as the
truncation distance decreases. The pVE critical points appear to converge
more quickly than those of VEOSn: for each potential, the critical point of
pVE2 is much closer to that of pVE4 than the critical point of VEOS3 is to
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FIG. 4
Vapor-branch spinodals from VEOS3 (dotted lines), VEOS4 (dashed lines), and VEOS5 (solid
lines) for LJTS2.5 (red), LJTS3.0 (blue), and LJ (black), plotted up to the resulting critical point.
Also shown are critical points computed from pVE2 (open symbols), pVE3 (cross-hatch sym-
bols), and pVE4 (solid symbols)



that VEOS5. The pVE perturbs from a reference of hard spheres, while the
VEOS perturbs from the ideal gas; thus we may consider that the pVE has a
better starting point for the perturbation.

CONCLUSIONS

Truncation and shift result in a more repulsive pair potential, and thus
virial coefficients that are generally more positive, especially at low tem-
peratures. The higher the order of a virial coefficient (the more pair inter-
actions it describes), the more sensitive it is to modification of the pair
potential. As higher-order interactions become more relevant, either upon
increasing the order of a virial coefficient or increasing the density at which
a bulk property is evaluated, one should expect differences in values com-
puted from LJTS and LJ potentials to increase. As much is observed here for
the spinodals computed from VEOS5: as the density increases, LJTS-VEOS5
spinodals of increasing truncation distance peel away from the VEOS5
spinodal of the unmodified potential. The VEOS5 spinodals for the popular
truncation distances of 2.5 and 3.0σ begin to differ markedly from that of
LJ well below a third of the critical density, and ultimately result in VEOS5
critical temperatures that are 20 and 12% lower, respectively.

The critical points of the virial equation of state and the perturbed virial
expansion appear to be converging to similar values that are not coincident
with the true critical point, or at least not with the true critical density. The
perturbed virial expansion considered here appears to be converging more
rapidly, most likely because it is perturbing from a more accurate reference
(hard spheres) than the virial equation of state is. The ability of both treat-
ments to predict the critical point appears to diminish as the truncation
distance decreases, though they capture the correct trend of shorter trunca-
tions suppressing the critical temperature. The perturbed virial expansion
(except at first order) and the virial equation of state do not demonstrate
the insensitivity of the critical density to truncation distance.
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